首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15020篇
  免费   954篇
  国内免费   1075篇
  2023年   172篇
  2022年   211篇
  2021年   344篇
  2020年   347篇
  2019年   407篇
  2018年   372篇
  2017年   407篇
  2016年   446篇
  2015年   549篇
  2014年   661篇
  2013年   798篇
  2012年   568篇
  2011年   632篇
  2010年   602篇
  2009年   830篇
  2008年   821篇
  2007年   907篇
  2006年   679篇
  2005年   637篇
  2004年   527篇
  2003年   477篇
  2002年   403篇
  2001年   401篇
  2000年   415篇
  1999年   429篇
  1998年   359篇
  1997年   341篇
  1996年   300篇
  1995年   351篇
  1994年   278篇
  1993年   269篇
  1992年   280篇
  1991年   228篇
  1990年   181篇
  1989年   180篇
  1988年   144篇
  1987年   172篇
  1986年   130篇
  1985年   128篇
  1984年   106篇
  1983年   59篇
  1982年   86篇
  1981年   81篇
  1980年   78篇
  1979年   55篇
  1978年   58篇
  1977年   29篇
  1976年   34篇
  1975年   22篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
103.
104.
Genetic variation among 20 populations of Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) in Thailand was investigated using single strand conformation polymorphism (SSCP) analysis of mitochondrial DNA sequences. From a total 641 individual parasitoids, seven distinct haplotypes containing a total of 32 polymorphic sites were observed from cytochrome oxidase subunit I (COI) sequences along with five distinct haplotypes containing a total 16 polymorphic sites from 16S rDNA sequences. Values obtained through pairwise FST comparisons and analysis of molecular variance (AMOVA) indicated significant genetic differentiation among D. longicaudata populations in Thailand. Congruent relationships showing separation of these populations into three groups were obtained from Neighbor joining and Bayesian phylogenetic tree analyses along with the use of haplotype networks. This SSCP analysis of populations of the D. longicaudata species complex is the first report using molecular population genetic methods to analyze the structure of this parasitoid species in Thailand. This may provide useful information for release of parasitoid strains to maximize their benefit in biological control programs.  相似文献   
105.
Determination of appropriate nutritional requirements is essential to optimize the productivity and longevity of lactating sows. The current recommendations for requirements do not consider the large variation between animals. Therefore, the aim of this study was to determine the amino acid recommendations for lactating sows using a stochastic modeling approach that integrates population variation and uncertainty of key parameters into establishing nutritional recommendations for lactating sows. The requirement for individual sows was calculated using a factorial approach by adding the requirement for maintenance and milk. The energy balance of the sows was either negative or zero depending on feed intake being a limiting factor. Some parameters in the model were sow-specific and others were population-specific, depending on state of knowledge. Each simulation was for 1000 sows repeated 100 times using Monte Carlo simulation techniques. BW, back fat thickness of the sow, litter size (LS), average litter gain (LG), dietary energy density and feed intake were inputs to the model. The model was tested using results from the literature, and the values were all within ±1 s.d. of the estimated requirements. Simulations were made for a group of low- (LS=10 (s.d.=1), LG=2 kg/day (s.d.=0.6)), medium- (LS=12 (s.d.=1), LG=2.5 kg/day (s.d.=0.6)) and high-producing (LS=14 (s.d.=1), LG=3.5 kg/day (s.d.=0.6)) sows, where the average requirement was the result. In another simulation, the requirements were estimated for each week of lactation. The results were given as the median and s.d. The average daily standardized ileal digestible (SID) protein and lysine requirements for low-, medium- and high-producing sows were 623 (CV=2.5%) and 45.1 (CV=4.8%); 765 (CV=4.9%) and 54.7 (CV=7.0%); and 996 (CV=8.5%) and 70.8 g/day (CV=9.6%), respectively. The SID protein and lysine requirements were lowest at week 1, intermediate at week 2 and 4 and the highest at week 3 of lactation. The model is a valuable tool to develop new feeding strategies by taking into account the variable requirement between groups of sows and changes during lactation. The inclusion of between-sow variation gives information on safety margins when developing new dietary recommendations of amino acids and protein for lactating sows.  相似文献   
106.
107.
The major function of the Haptoglobin (Hp) protein is to control trafficking of extracorpuscular hemoglobin (Hb) thru the macrophage CD163 receptor with degradation of the Hb in the lysosome. There is a common copy number polymorphism in the Hp gene (Hp 2 allele) that has been associated with a severalfold increased incidence of atherothrombosis in multiple longitudinal studies. Increased plaque oxidation and apoptotic markers have been observed in Hp 2-2 atherosclerotic plaques, but the mechanism responsible for this finding has not been determined. We proposed that the increased oxidative injury in Hp 2-2 plaques is due to an impaired processing of Hp 2-2-Hb complexes within macrophage lysosomes, thereby resulting in redox active iron accumulation, lysosomal membrane oxidative injury, and macrophage apoptosis. We sought to test this hypothesis in vitro using purified Hp-Hb complex and cells genetically manipulated to express CD163. CD163-mediated endocytosis and lysosomal degradation of Hp-Hb were decreased for Hp 2-2-Hb complexes. Confocal microscopy using lysotropic pH indicator dyes demonstrated that uptake of Hp 2-2-Hb complexes disrupted the lysosomal pH gradient. Cellular fractionation studies of lysosomes isolated from macrophages incubated with Hp 2-2-Hb complexes demonstrated increased lysosomal membrane oxidation and a loss of lysosomal membrane integrity leading to lysosomal enzyme leakage into the cytoplasm. Additionally, markers of apoptosis, DNA fragmentation, and active caspase 3 were increased in macrophages that had endocytosed Hp 2-2-Hb complexes. These data provide novel mechanistic insights into how the Hp genotype regulates lysosomal oxidative stress within macrophages after receptor-mediated endocytosis of Hb.  相似文献   
108.
Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD−/− mice. LCAD−/− mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD−/− mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD−/− surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD−/− lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.  相似文献   
109.
The genetic diversity among the Turkish cultivars of common bean (Phaseolus vulgaris L.) was estimated by studying the Sequence Related Amplified Polymorphism (SRAP), Peroxidase Gene Polymorhism (POGP), and Chloroplast Simple Sequence Repeats (cpSSR) markers. The unweighted pair group method arithmetic average (UPGMA) and Neighbor joining (NJ) algorithm resulted in a dendrogram representing the genetic relationship among major common bean cultivars grown in Turkey. The dendrogram generated two groups possibly representing two different major gene pools. By using three different marker systems, 194 alleles were detected and 118 were found to be polymorphic. For SRAP, POGP and cpSSR, 64, 64 and 26% polymorphism ratio were obtained, respectively. Principal Component Analysis (PCA) was also carried out to determine genetic variation among common bean genotypes and three different groups were generated. The individuals were placed into three different populations in structure analysis. Three populations created in structure analysis were exactly corresponded to the three groups in PCA. Analysis of Molecular Variance (AMOVA) was used to partition the genetic variations. The percentage of the variance was approximately 59%, 3%, and 38% among groups, among populations within groups and, within populations, respectively. The percentages of variation were found to be significantly high within the populations and among the groups.  相似文献   
110.
Variation among modules of a single genet could provide a means of adaptation to environmental heterogeneity. Two mechanisms that can give rise to such variation are programmed developmental change and phenotypic plasticity. I quantified the relative roles of these two mechanisms in causing within-individual variation in six leaf traits of an annual plant. Under controlled temperatures, morphological, anatomical, and physiological traits of leaves produced by the same individual differed as a function of both the node at which they were produced and the temperature they experienced during development. Temperature, node, and interactions between them all contributed significantly to the pattern of within-individual variation in leaf traits, although the relative contributions of programmed developmental change and phenotypic plasticity differed for different traits. I hypothesize that these two mechanisms for generating within-individual variation in module phenotype are favored by different patterns of environmental heterogeneity; when the sequence of environments encountered by modules of a single individual is predictable, programmed developmental change may be favored, and phenotypic plasticity may be favored when the sequence of environments is irregular with respect to individual ontogeny and therefore not predictable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号